If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.2x^2+6x+5=0
a = 0.2; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·0.2·5
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*0.2}=\frac{-6-4\sqrt{2}}{0.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*0.2}=\frac{-6+4\sqrt{2}}{0.4} $
| {5y-2=12} | | 8-2k=5+7k | | 20=15+2x(-3x+4) | | 8x+16=2x-30 | | 3w-8w=35 | | X+22+2x=1-2x-4 | | 5x+10=8+4x | | 14x^2+44x+35=0 | | 3+9x=2+6X | | x=78+8 | | 4^x+〖2.4〗^x=48 | | 5g+4=6g-7 | | -4(x+2)-41=5-26 | | -3y^2+120y+1200=0 | | -3y^2-120y+1200=0 | | (X-4)^2-6(x-4)+5=0 | | 2.25x+3.75x=180 | | 2y’’+7y’-4y=0 | | 10^y=9 | | 2.25x+3.75=180 | | 52=2^3x+1 | | 6s-34=134 | | 4z/9+5=-2 | | (x-4)^2-5=44 | | 13x+24+35+13x+14=360 | | 8v-2v=125 | | 7s+26=201 | | x+(x*0.1)=41.22 | | 3x/4+5x/2=12 | | 9h-4=16h+4/2 | | x/9+2=-9 | | 2y+3y+8y=78 |